Esercizio vhdl
Posted: 25 Jan 2020, 09:07
Buongiorno, premetto che sono nuovo di questo linguaggio e non capisco ancora bene molte cose.
Vi spiego il mio problema. Dovrei svolgere un esercizio in cui devo programmare il sistema di entrata/uscita di un parcheggio. Ci sono due fotocellule(entrata/uscita) due sbarre che si alzano per regolare il passaggio (entrata/uscita) e un pulsante che deve essere premuto nel momento in cui qualcuno voglia entrare. Se qualcuno vuole entrare, la sbarra rimane alzata per massimo 15 colpi di clk. All'uscita invece rimane alzata finché la macchina non esce.
Io ho creato i miei stati, e quando faccio il testbench, però, la macchina non rispetta alcuni passaggi di stato, però non so proprio dove io possa aver sbagliato, vorrei un aiuto se possibile, grazie.
Vi spiego il mio problema. Dovrei svolgere un esercizio in cui devo programmare il sistema di entrata/uscita di un parcheggio. Ci sono due fotocellule(entrata/uscita) due sbarre che si alzano per regolare il passaggio (entrata/uscita) e un pulsante che deve essere premuto nel momento in cui qualcuno voglia entrare. Se qualcuno vuole entrare, la sbarra rimane alzata per massimo 15 colpi di clk. All'uscita invece rimane alzata finché la macchina non esce.
Io ho creato i miei stati, e quando faccio il testbench, però, la macchina non rispetta alcuni passaggi di stato, però non so proprio dove io possa aver sbagliato, vorrei un aiuto se possibile, grazie.
- Code: Select all
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.std_logic_arith.all;
use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity controllore_modulo is
Port ( clk : in STD_LOGIC;
rst : in STD_LOGIC;
puls : in STD_LOGIC;
fot_a : in STD_LOGIC;
fot_b : in STD_LOGIC;
sbar_a : out STD_LOGIC;
sbar_b : out STD_LOGIC;
sem : out STD_LOGIC);
end controllore_modulo;
architecture Behavioral of controllore_modulo is
type state is (s0, s1, s2, s3, s4, s5, s6);
signal present_state,next_state: state;
signal count, new_count: integer range 0 to 15; -- Contatori in interi dei cicli di clock
signal time_over: std_logic := '0' ; -- Segnale tempo scaduto
begin
--Processo sequenziale che regola il passaggio di stato e aggiorna, di conseguenza, il contatore
synchronous_process: process (clk, rst, fot_a, fot_b, time_over, present_state)
begin
if rising_edge(clk) then
if (rst='1') then
present_state<=s0;
count<=0;
else
if((present_state = s0)) then
if((puls='1')and(fot_a='1')and (fot_b='0')) then
present_state <= next_state;
end if;
elsif(present_state = s2) then
if((puls='1')and(fot_a='1')and (fot_b='0')) then
present_state<=next_state;
elsif(((puls='0')and(fot_a='0')and (fot_b='1')) or ((puls='0')and(fot_a='1')and (fot_b='1')) ) then
present_state<=next_state;
end if;
elsif(present_state = s1) then
if(((puls='0')and(fot_a='1')and (fot_b='0')and(time_over='1')) or ((puls='1')and(fot_a='1')and (fot_b='0')and(time_over='1'))) then
present_state <= next_state;
elsif((puls='0')and(fot_a='0')and(fot_b='0')and(time_over='0')) then
present_state <= next_state;
count <= new_count;
end if;
elsif(present_state = s3) then
if(((puls='0')and(fot_a='1')and (fot_b='0')and(time_over='1')) or ((puls='1')and(fot_a='1')and (fot_b='0')and(time_over='1'))) then
present_state <= next_state;
elsif(((puls='0')and(fot_a='0')and(fot_b='0')and(time_over='0')) or ((puls='1')and(fot_a='0')and(fot_b='0')and(time_over='0'))) then
present_state <= next_state;
count <= new_count;
end if;
elsif(present_state = s4) then
if(((puls='0')and(fot_a='0')and(fot_b='1')) or ((puls='1')and(fot_a='1')and(fot_b='1')) or ((puls='0')and(fot_a='1')and(fot_b='1')) or ((puls='1')and(fot_a='0')and(fot_b='1'))) then
present_state<= next_state;
end if;
elsif(present_state = s5) then
if(((puls='0')and(fot_a='0')and(fot_b='0')) or ((puls='0')and(fot_a='1')and(fot_b='0'))) then
present_state<=next_state;
end if;
elsif(present_state = s6) then
if(((puls='0')and(fot_a='0')and(fot_b='0')) or ((puls='0')and(fot_a='1')and(fot_b='0'))) then
present_state<=next_state;
end if;
end if;
end if;
end if;
end process;
-- Transizione degli stati
state_process: process (present_state,puls,fot_a,fot_b,time_over)
begin
case present_state is
--Stato iniziale
when s0=> if((puls='0') and (fot_a='0') and (fot_b='0')) then
next_state <= s0;
elsif((puls='1') and (fot_a='1') and (fot_b='0')) then
next_state <= s1;
else
next_state <= s0;
end if;
--Stato s1
when s1=> if((puls='-') and (fot_a='1') and (fot_b='0') and (time_over='0')) then
next_state<=s1;
elsif((puls='-') and (fot_a='1') and (fot_b='0') and (time_over='1')) then
next_state<=s0;
elsif((puls='0') and (fot_a='0') and (fot_b='0')) then
next_state<=s2;
else
next_state<=s0;
end if;
--Stato s2
when s2=> if((puls='0') and (fot_a='0') and (fot_b='0')) then
next_state <= s2;
elsif((puls='1') and (fot_a='1') and (fot_b='0')) then
next_state <= s3;
elsif(((puls='0')and(fot_a='0')and (fot_b='1')) or ((puls='0')and(fot_a='1')and (fot_b='1')) ) then
next_state <= s6;
else
next_state<= s2;
end if;
--Stato s3
when s3=> if((puls='-') and (fot_a='1') and (fot_b='0') and (time_over='0')) then
next_state <= s3;
elsif((puls='-') and (fot_a='1') and (fot_b='0') and (time_over='1')) then
next_state <= s2;
elsif((puls='-') and (fot_a='0') and (fot_b='0')) then
next_state <= s4;
else
next_state <= s2;
end if;
--stato s4
when s4=> if((puls='-') and (fot_a='-') and (fot_b='1')) then
next_state<=s5;
elsif((puls='-') and (fot_a='-') and (fot_b='0')) then
next_state<=s4;
end if;
--stato s5
when s5=> if((puls='-') and (fot_a='-') and (fot_b='1')) then
next_state <= s5;
elsif((puls='0') and (fot_a='0') and (fot_b='0')) then
next_state <= s2;
else
next_state<=s5;
end if;
--stato s6
when s6=> if(((puls='0') and (fot_a='-') and (fot_b='0'))) then
next_state<=s0;
elsif(((puls='0') and (fot_a='-') and (fot_b='1'))) then
next_state<=s6;
end if;
end case;
end process;
--Valori dei segnali in uscita per i diversi stati (Implementazione Moore)
output_function : process(present_state)
begin
case (present_state) is
when s0 =>
sem <= '1' ; sbar_a <= '0' ; sbar_b <= '0';
when s1 =>
sem <= '1' ; sbar_a <= '1' ; sbar_b <= '0';
when s2 =>
sem <= '1' ; sbar_a <= '0' ; sbar_b <= '0';
when s3 =>
sem <= '1' ; sbar_a <= '1' ; sbar_b <= '0';
when s4 =>
sem <= '0' ; sbar_a <= '0' ; sbar_b <= '0';
when s5 =>
sem <= '0' ; sbar_a <= '0' ; sbar_b <= '1';
when s6 =>
sem <= '1' ; sbar_a <= '0' ; sbar_b <= '1';
end case;
end process;
--Contatore dei 15 cicli di clock
Timer:process(present_state,count)
begin
if (present_state=s1 or present_state=s3) then
if (count=15) then --clock attraverso il segnale count arriva a 15
new_count<=0;
time_over<='1'; --scatta il segnale di time over
else
new_count<=count+1;
time_over<='0';
end if;
else
new_count <= 0;
time_over <= '0';
end if;
end process;
end Behavioral;