Problema con rete neurale BP.py che non impara

IA e Sistemi di Visione Artificiale per la Robotica

Problema con rete neurale BP.py che non impara

Postby rna » 17 Aug 2019, 05:34

Buon giorno,

scrivo riguardo un problema con una rete neurale back-propagation in python il cui codice è stato trovato in rete.
Mi succede che non impara i pattern ad essa presentati.
Invio gli allegati delle immagini usate come ingressi da presentare ai 1024 neuroni di input ed il relativo codice in python della
rete.
Essa è composta da 1024 neuroni di input, 42 neuroni hidden e 7 neuroni di output.
Riporto di seguito i risultati dell'addestramento della rete, presentandole le imppagini strada4.jpeg, strada3.jpeg, strada2.jpeg
e strada1.jpeg.

Code: Select all
Combined error 0.499998982028
Combined error 0.499999700088
Combined error 0.499999699588
Combined error 0.499999699085
Combined error 0.499999698581
Combined error 0.499999698075
Combined error 0.499999697568
Combined error 0.499999697059
Combined error 0.499999696547
Combined error 0.499999696034
Combined error 0.49999969552
Combined error 0.499999695003
Combined error 0.499999694485
Combined error 0.499999693964
Combined error 0.499999693442
Combined error 0.499999692918
Combined error 0.499999692392
Combined error 0.499999691864
Combined error 0.499999691334
Combined error 0.499999690803
Inputs: [ 0.  0.  0. ...,  0.  0.  0.] --> [-0.9999999874304197, 0.9999999994018853, 0.9999999999813893, 0.9999996945158525, -0.9999997980149685, 0.9999999999919921, 0.999999690271247]    Target [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1]
Inputs: [ 0.  0.  0. ...,  0.  0.  0.] --> [-0.9999999874304197, 0.9999999994018853, 0.9999999999813893, 0.9999996945158525, -0.9999997980149685, 0.9999999999919921, 0.999999690271247]    Target [0.0, 0.0, 0.0, 0.0, 0.0, 1, 0.0]



rete back-propagation BP.py:
Code: Select all
import math
import random
import string
import numpy as np
import cv2 as cv
from numpy import *



class NN:
  def __init__(self, NI, NH, NO):
    # number of nodes in layers
    self.ni = NI + 1 # +1 for bias
    self.nh = NH
    self.no = NO
   
    # initialize node-activations
    self.ai, self.ah, self.ao = [],[], []
    self.ai = [1.0]*self.ni
    self.ah = [1.0]*self.nh
    self.ao = [1.0]*self.no

    # create node weight matrices
    self.wi = makeMatrix (self.ni, self.nh)
    self.wo = makeMatrix (self.nh, self.no)
    # initialize node weights to random vals
    randomizeMatrix ( self.wi, -0.2, 0.2 )
    randomizeMatrix ( self.wo, -2.0, 2.0 )
    # create last change in weights matrices for momentum
    self.ci = makeMatrix (self.ni, self.nh)
    self.co = makeMatrix (self.nh, self.no)
   
  def runNN (self, inputs):
    if len(inputs) != self.ni-1:
      print 'incorrect number of inputs'
   
    for i in range(self.ni-1):
      self.ai[i] = inputs[i]
     
    for j in range(self.nh):
      sum = 0.0
      for i in range(self.ni):
        sum +=( self.ai[i] * self.wi[i][j] )
      self.ah[j] = sigmoid (sum)
   
    for k in range(self.no):
      sum = 0.0
      for j in range(self.nh):       
        sum +=( self.ah[j] * self.wo[j][k] )
      self.ao[k] = sigmoid (sum)
     
    return self.ao
     
     
 
  def backPropagate (self, targets, N, M):
    # http://www.youtube.com/watch?v=aVId8KMsdUU&feature=BFa&list=LLldMCkmXl4j9_v0HeKdNcRA
   
    # calc output deltas
    # we want to find the instantaneous rate of change of ( error with respect to weight from node j to node k)
    # output_delta is defined as an attribute of each ouput node. It is not the final rate we need.
    # To get the final rate we must multiply the delta by the activation of the hidden layer node in question.
    # This multiplication is done according to the chain rule as we are taking the derivative of the activation function
    # of the ouput node.
    # dE/dw[j][k] = (t[k] - ao[k]) * s'( SUM( w[j][k]*ah[j] ) ) * ah[j]
    output_deltas = [0.0] * self.no
    for k in range(self.no):
      error = targets[k] - self.ao[k]
      output_deltas[k] =  error * dsigmoid(self.ao[k])
   
    # update output weights
    for j in range(self.nh):
      for k in range(self.no):
        # output_deltas[k] * self.ah[j] is the full derivative of dError/dweight[j][k]
        change = output_deltas[k] * self.ah[j]
        self.wo[j][k] += N*change + M*self.co[j][k]
        self.co[j][k] = change

    # calc hidden deltas
    hidden_deltas = [0.0] * self.nh
    for j in range(self.nh):
      error = 0.0
      for k in range(self.no):
        error += output_deltas[k] * self.wo[j][k]
      hidden_deltas[j] = error * dsigmoid(self.ah[j])
   
    #update input weights
    for i in range (self.ni):
      for j in range (self.nh):
        change = hidden_deltas[j] * self.ai[i]
        #print 'activation',self.ai[i],'synapse',i,j,'change',change
        self.wi[i][j] += N*change + M*self.ci[i][j]
        self.ci[i][j] = change
       
    # calc combined error
    # 1/2 for differential convenience & **2 for modulus
    error = 0.0
    for k in range(len(targets)):
      error = 0.5 * (targets[k]-self.ao[k])**2
    return error
       
       
  def weights(self):
    print 'Input weights:'
    for i in range(self.ni):
      print self.wi[i]
    print
    print 'Output weights:'
    for j in range(self.nh):
      print self.wo[j]
    print ''
 
  def test(self, patterns):
    for p in patterns:
      inputs = p[0]
      print 'Inputs:', p[0], '-->', self.runNN(inputs), '\tTarget', p[1]
 
  def train (self, patterns, max_iterations = 1000, N=0.5, M=0.1):
    for i in range(max_iterations):
      for p in patterns:
        inputs = p[0]
        targets = p[1]
        self.runNN(inputs)
        error = self.backPropagate(targets, N, M)
      if i % 50 == 0:
        print 'Combined error', error
    self.test(patterns)
   

def sigmoid (x):
  return math.tanh(x)
 
# the derivative of the sigmoid function in terms of output
# proof here:
# http://www.math10.com/en/algebra/hyperbolic-functions/hyperbolic-functions.html
def dsigmoid (y):
  return 1 - y**2

def makeMatrix ( I, J, fill=0.0):
  m = []
  for i in range(I):
    m.append([fill]*J)
  return m
 
def randomizeMatrix ( matrix, a, b):
  for i in range ( len (matrix) ):
    for j in range ( len (matrix[0]) ):
      matrix[i][j] = random.uniform(a,b)

def main ():
  inx = 0
  a = zeros((1024))
  b = zeros((1024))
  c = zeros((1024))
  d = zeros((1024))
  #interfaccia opencv per rilevare le foto
  #dimensioni in pixel dell' immagine
  Y=32
  X=32
  #leggi immagine originale
  img1 = cv.imread('strada4.png')
  #ingrandisci immagine originale a 500x500 pixel
  dst  = cv.resize(img1, (500,500))
  #ridimensiona a 100x100 pixel
  dst = cv.resize(dst, (X,Y))
  #converti immagine in scala di grigi
  grayimg = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
  #threshold
  th1 = cv.adaptiveThreshold(grayimg,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,\
         cv.THRESH_BINARY,11,2)
  #operatore canny per trovare i bordi
  #edges = cv.Canny(grayimg,X,Y)
  #mostra immagine con threshholding
  cv.imshow('Strada filtrata', th1)
   #leggi immagine originale
  img1 = cv.imread('strada3.png')
  #ingrandisci immagine originale a 500x500 pixel
  dst  = cv.resize(img1, (500,500))
  #ridimensiona a 100x100 pixel
  dst = cv.resize(dst, (X,Y))
  #converti immagine in scala di grigi
  grayimg = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
  #threshold
  th2 = cv.adaptiveThreshold(grayimg,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,\
         cv.THRESH_BINARY,11,2)
  #operatore canny per trovare i bordi
  #edges = cv.Canny(grayimg,X,Y)
  #mostra immagine con threshholding
  cv.imshow('Strada filtrata', th2)
   #leggi immagine originale
  img1 = cv.imread('strada2.png')
  #ingrandisci immagine originale a 500x500 pixel
  dst  = cv.resize(img1, (500,500))
  #ridimensiona a 100x100 pixel
  dst = cv.resize(dst, (X,Y))
  #converti immagine in scala di grigi
  grayimg = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
  #threshold
  th3 = cv.adaptiveThreshold(grayimg,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,\
         cv.THRESH_BINARY,11,2)
  #operatore canny per trovare i bordi
  #edges = cv.Canny(grayimg,X,Y)
  #mostra immagine con threshholding
  cv.imshow('Strada filtrata', th3)
   #leggi immagine originale
  img1 = cv.imread('strada1.png')
  #ingrandisci immagine originale a 500x500 pixel
  dst  = cv.resize(img1, (500,500))
  #ridimensiona a 100x100 pixel
  dst = cv.resize(dst, (X,Y))
  #converti immagine in scala di grigi
  grayimg = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
  #threshold
  th4 = cv.adaptiveThreshold(grayimg,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,\
         cv.THRESH_BINARY,11,2)
  #operatore canny per trovare i bordi
  #edges = cv.Canny(grayimg,X,Y)
  #mostra immagine con threshholding
  th1 = th1/1000.0
  th2 = th2/1000.0
  th3 = th3/1000.0
  th4 = th4/1000.0
  for y in range(32):
    for x in range(32):
        th1[x][y] = a[inx]
        inx = inx + 1
  inx = 0
  for y in range(32):
    for x in range(32):
        th2[x][y] = b[inx]
        inx = inx + 1
  inx = 0
  for y in range(32):
    for x in range(32):
        th3[x][y] = c[inx]
        inx = inx + 1
  inx = 0
  for y in range(32):
    for x in range(32):
        th4[x][y] = d[inx]
        inx = inx + 1
  pat = [
     [a, [0.0,0.0,0.0,0.0,0.0,0.0,1]],
     [b, [0.0,0.0,0.0,0.0,0.0,1,0.0]]
     #[c, [0.0,0.0,0.0,0.0,1,0.0,0.0]],
     #[d, [0.0,0.0,0.0,1,0.0,0.0,0.0]]
     ]
  myNN = NN (1024, 42, 7)
  myNN.train(pat)
  print myNN.runNN(c)

if __name__ == "__main__":
    main()


Come si vede sopra "Inputs" sono gli ingressi presentati dopo la --> ci sono i risultati ottenuti dell'esecuzione della rete, mentre
con "Target" vediamo le uscite volute.Come si puo' notare non apprende correttamente i pattern.
Attachments
strada2.png
strada2.png (94.66 KiB) Viewed 5123 times
strada3.png
strada3.png (106.03 KiB) Viewed 5123 times
strada4.png
strada4.png (100.17 KiB) Viewed 5123 times
Last edited by rna on 17 Aug 2019, 05:40, edited 2 times in total.
rna
 
Posts: 5
Joined: 04 Sep 2017, 08:53

Re: Problema con rete neurale BP.py che non impara

Postby rna » 17 Aug 2019, 05:36

Allego di seguito l'ultima immagine strada1.jpeg:
Nessuno mi puo' aiutare a capire cosa non funziona in questa rete?
Attachments
strada1.png
strada1.png (83.77 KiB) Viewed 5122 times
rna
 
Posts: 5
Joined: 04 Sep 2017, 08:53


Return to Intelligenza & Visione Artificiale

Who is online

Users browsing this forum: No registered users and 3 guests

cron